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Abstract

If one places N cities randomly on a continuum in an unit area, extensive numerical results

and their analysis (scaling, etc.) suggest that the best optimized travel distance per city

becomes lE ' 0.72/
√
N for the Euclidean metric, and lM ' 0.92/

√
N for the Manhattan

metric. The analytic bounds, we discuss here, give 0.5 < lE
√
N < 0.92 and 0.64 < lM

√
N <

1.17. When the cities are randomly placed on a lattice with concentration p, we find (with

N = p for unit area of the country) lE
√
p and lM

√
p vary monotonically with p: lE

√
p =

lM
√
p = 1 for p = 1, and lE

√
p ' 0.72 and lM

√
p ' 0.92 as p → 0. The problem is trivial

for p = 1 but it reduces to the continuum TSP for p → 0. We did not get any irregular

behaviour at any intermediate point, e.g., the percolation point. The crossover from the

triviality to the NP- hard problem seems to occur at p < 1.

—————————————————————————

* K. C. Kar Memorial Lecture, 1999 (to be published in Indian J. of Theo. Phys., Calcutta).



1. Introduction

In everyday life we face several complex problems, classified as combinatorial optimization

problems, the solutions of which are of great practical importance. Research in this area

tries to find different efficient techniques for finding the extremum (maximum or minimum)

values of a function of many different independent variables [1-3].

The travelling salesman problem (TSP) is a simple example of a combinatorial optmiza-

tion problem and perhaps the most famous one. Given a certain set of cities and the intercity

distance metric, a travelling salesman must find the shortest tour in which he visits all the

cities and comes back to his starting point. It is a non-deterministic polynomial complete

(NP- complete) problem. NP problems are those for which a potential solution can be

checked efficiently for correctness, but finding such a solution appears to take time which

scales exponentially with the size N in the worst case. The completeness property of NP-

complete problems means that if it is possible to find a deterministic algorithm that solves

one NP- complete problem in polynomial time, then the other NP- complete problems could

also be solved in polynomial time.

In the TSP, the most naive algorithm for finding the optimal tour would have to consider

all the (N − 1)!/2 possible tours for N number of cities and check for the shortest of them.

Working this way, the fastest computer available today would require more time than the

current age of the universe to solve a case with about 30 cities. The typical-case behaviour

is difficult to characterize for the the TSP though it is believed to require exponential time

to solve in the worst case. For this reason the TSP serves as a prototype problem for the

study of the combinatorial optimization problems in general.

In the normal TSP, we have N number of cities distributed in some continuum space and

we determine the average optimal travel distance per city l̄E in the Euclidean metric (with

∆rE =
√

∆x2 + ∆y2), or l̄M in the Manhattan metric (with ∆rM = |∆x| + |∆y|). Since

the average distance per city (for fixed area) scales with the number of cities N as 1/
√
N ,

we find that the normalized travel distance per city ΩE = l̄E
√
N or ΩM = l̄M

√
N become

the optimized constants and their values depend on the method used to optimize the travel
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distance. In section 2, we discuss some algorithms used to determine the optimal tour and

find the values of the constants ΩE and ΩM for the optimized travel. In section 3, we present

an analytic method to estimate the upper and lower bounds of ΩE and ΩM .

In the lattice version of the TSP, the cities are represented by randomly occupied lattice

sites of a two- dimensional square lattice; the fractional number of occupied sites being p

(lattice occupation concentration). In this case the average optimal travel distance in the

Euclidean metric l̄E, and in the Manhattan metric l̄M , vary with the lattice concentration p.

Then the normalised travel distance per city are defined as ΩE = l̄E
√
p and ΩM = l̄M

√
p .

In section 4, we study the variation of ΩE and ΩM , and the ratio ΩM/ΩE with p. Finally,

we draw conclusions in section 5.

2. Some heuristic algorithms

The most naive method to obtain an approximate solution of travelling salesman problem is

the “greedy” heuristic algorithm [1, 2]. Suppose we have a random arrangement of N cities

in a square (country) of fixed area (taken to be unity). Let us think of any tour to start-with

and then make a local exchange of a pair of cities in the tour. We compute the new tour

length and if it is lower than the previous one, then the greedy algorithm accepts the new

tour as the starting point for further such modifications. The “Lin- Kernighan” algorithm

[4, 5] considers local exchange between three or more cities.

The essential drawback of such local search algorithms is the obvious one of getting

stuck at a local minimum, where any local rearrangement in the tour does not improve the

optimized tour length. The “simulated annealing method” [2, 6] is an ingenious method in

analogy with the thermodynamic way of avoiding such local minima in free energy (glass

formations) and achieving the global minimum of a many-body system by slow cooling or

annealing. The rapid quenching of the system leads to the trapping of the system in a local

minimum (or glass) state. The system cannot get out of it, since the Boltzmann probability

to get out of the minimum drops to zero, as the temperature becomes zero due to quenching.

This is similar to the greedy or other local search algorithms. In the annealing, the system
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is slowly cooled so that as the system falls in a local trap, the finite Boltzmann probability

(∼ exp(E′ − E)/kT, for trap energy E and barrier height E ′) allows the system to get out

of the trap, maintaining a general flow to lower energy states as temperature decreases.

Eventually the system anneals to the ground state at the lowest temperature.

In the TSP case, one takes the total tour length L (= Nl) as the energy E and one

introduces a fictitious temperature T . Initially one takes T very high such that the average

total tour length L̄ is much higher than the global minimum. The tours are then modified

locally and the modified tours are accepted with probability ∼ exp(∆L/kT) where ∆L is

the change in the tour length. In greedy algorithm the probability is unity for negative ∆L

and it is zero for positive ∆L cases. Here, probability is non-vanishing even for ∆L positive

as long as the temperature is nonzero!

Simulated annealing and numerous heuristic generalizations of the local search algorithm

optimize very effectively on small scales involving a small number of variables, but fail for the

larger scales that require the modification of many variables simultaneously. To deal with

the large scales, “genetic algorithms” [7] use a “crossing” procedure which takes two good

configurations − “parents”, from a population and finds sub-paths that are common to the

parents. It generates a “child” by reconnecting those sub-paths, either randomly or by using

large parts of its parents. A population of configurations is evolved from one generation to

the next using these crossings followed by a selection of the best children. However, this

approach supposedly does not work well in practice since it is extremely difficult to produce

two parents and cross them to make a child as good as them. This is a major drawback of

the genetic algorithms and is responsible for their limited use.

So far, careful analysis of the numerical results obtained indicates that ΩE ' 0.72 [8] for

TSP on continuum.

3. Some analytical results for the bounds for Ω

Although the TSP problem is a multivariable optimization problem (real number of variables

∼ N ! in an N city problem), we now look for an approximate analytical solution (upper
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bound) by expressing the travel distance as a function of a single variable and optimizing

the distance with respect to that variable [9]. As is obvious, the problem is trivial in one

dimensional case where any directed tour will solve it. In two dimensions, one can again

reduce it (approximately) to an one dimensional problem, where the square (country) is

divided into strips of width W and within each strip, the salesman visits the cities in a

directed way. The total travel distance is then optimized with respect to W .

Let the strip width be W and the probability density of cities be p (= N for unit area).

We have a city at (0, y1) [See Fig. 1]. The probability that the next city is between distances

x and x + ∆x, is pW∆x. The probability that there is no city in the distance x = n∆x,

is (1 − pW∆x)n ∼ e−(pWx). The probability that there is a city between y and y + ∆y, is

∆y/W . Hence the probability that there is no other city within distance y is (1 − y/W ).

The average distance between any two consecutive cities is therefore

l̄E = 2
∫ ∞

x=0

∫ W

y=0

√
x2 + y2 pWdx e−(pWx)dy

W
(1 − y

W
) . (1)

The factor 2 arises to take care of the fact that y can be both positive and negative. We

make the substitutions: u = pWx and v = y/W , so that

l̄E = 2
∫ ∞

u=0

∫ 1

v=0

1

pW

√
u2 + p2W 4v2 e−u(1 − v)dudv .

We introduce two dimensionless quantities ΩE =
√
p l̄E and W̃ =

√
p W , so that

ΩE =
2

W̃

∫ ∞

u=0

∫ 1

v=0

√
u2 + W̃ 4v2 e−u(1− v)dudv . (2)

Using the method of Monte Carlo integration to evaluate the above integral, we get the

minimum ΩE ∼ 0.92 at normalized strip width W̃ ∼ 1.73 [See Fig. 2].

In the Manhattan metric the average distance between any two consecutive cities is

l̄M = 2
∫ ∞

x=0

∫ W

y=0
(x+ y)pWdxe−(pWx)dy

W
(1 − y

W
) . (3)

As before we introduce u = pWx and v = y/W , so that

l̄M = 2
∫ ∞

u=0

∫ 1

v=0

1

pW
(u+ pW 2v)e−u(1 − v)dudv ,
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and then introduce the dimensionless quantities ΩM =
√
p l̄M and W̃ =

√
p W , so that

ΩM =
2

W̃

∫ ∞

u=0

∫ 1

v=0
(u+ W̃ 2v)e−u(1− v)dudv . (4)

Using the method of Monte Carlo integration, we get the minimum ΩM ∼ 1.15 at the

normalized strip width W̃ ∼ 1.73 [See Fig. 3].

Note that the relation

ΩM '
4

π
ΩE

can be explained as follows. Let

x = lE sin θ and y = lE cos θ .

Then,

lM = x+ y = lE(cos θ + sin θ) .

Since 〈x〉 = 〈y〉,
l̄M = 2l̄E〈cos θ〉 .

We have now

〈cos θ〉 =
2

π

∫ π/2

0
cos θdθ =

2

π
[sin θ]π/20 =

2

π
.

Hence

l̄M =
4

π
l̄E , or ΩM =

4

π
ΩE . (5)

Let us now estimate the lower bound of the minimum travel distance per city. Let the

distance between any two cities be denoted by l. Then the probability that there is a city

between l and l+dl ∼ (p−1)2πl dl ∼ 2pπl dl. Now, the probability that there is no other city

in the distance l ∼ (1 − πl2)p−2 ∼ e−(p−2)πl2 ∼ e−pπl
2
. Therefore, P (l)dl = (2pπl)e−pπl

2
dl.

Note that
∫
P (l)dl = 1. Hence the average distance is

l̄E =
∫ ∞

0
lP (l)dl = 2pπ

∫ ∞

0
l2e−πpl

2

dl =
1

2

1√
p
. (6)

Therefore, the lower bound for ΩE = 1/2 . The lower bound for ΩM can then easily be

estimated to be 2/π in a similar manner.
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4. The TSP on randomly diluted lattices

The lattice version of the TSP was first studied by Chakrabarti [10]. In the lattice version

of the TSP, the cities are represented by randomly occupied lattice sites of a two- dimensional

square lattice (L×L), the fractional number of sites occupied being p (lattice concentration)

[11-13]. In this case, the average optimal travel distance in the Euclidean metric l̄E, and in

the Manhattan metric l̄M , vary with the lattice concentration p. We intend to study in this

case the variation of the normalised travel distance per city, ΩE = l̄E
√
p and ΩM = l̄M

√
p,

with the lattice occupation (city) concentration p.

We generate the randomly diluted lattice configuration following the standard Monte

Carlo procedure for 64(= N) randomly positioned (on the lattice) cities. We vary the lattice

size from (8× 8) to (48 × 48) so that the lattice concentration p varies from 1.000 to 0.028.

For each such lattice configuration, the exact optimum tour [See Fig. 4] is obtained with the

help of the GNU tsp solve [14]. We then calculate lE and lM . At each lattice concentration

p, we take different lattice configurations and then obtain the averages, l̄E and l̄M . We then

determine ΩE = l̄E
√
p and ΩM = l̄M

√
p and study the variation of ΩE and ΩM , and of

the ratio ΩM/ΩE with p. We find that ΩE has monotonic variation from 1 (for p = 1) to

a constant ∼ 0.79 (for p → 0) and ΩM has monotonic variation from 1 (for p = 1) to the

constant 1.01 (for p→ 0) respectively. We believe, with bigger N the value of ΩE eventually

reduces to about 0.72 as in continuum TSP. Results for higher values of N (' 100) [15] indeed

suggest the same. The ratio ΩM/ΩE changes from 1 to 1.26 (' 4/π), as p varies from 1 to 0

[See Fig. 5]. We note that the TSP on randomly diluted lattice is certainly a trivial problem

when p = 1 (lattice limit) as it reduces to the one-dimensional TSP (the connections in

the optimal tour are between the nearest neighbours along the lattice; Hamiltonian walks).

However, it is certainly hard at the p → 0 (continuum) limit. It is clear that the problem

crosses from triviality (for p = 1) to the NP- hard problem (for p→ 0) at a certain value of

p. It seems the transition occurs at p < 1. This requires further investigation.

6



5. Conclusions

If one places N cities randomly on a continuum in an unit area, the best numerical

results and their analysis (scaling, etc.) suggest that the best optimized travel distance per

city becomes lE ' 0.72/
√
N for the Euclidean metric and lM ' 0.92/

√
N for the Manhattan

metric. The analytic bounds we discussed in section 3, gives ΩE(= lE
√
N) < 0.92 and

ΩM (= lM
√
N) < 1.17. When the cities are randomly placed on a lattice with concentration

p, as discussed in section 4, we find (with N = p for unit area of the country) that ΩE(p)

and ΩM(p) are monotonically varying with p. The problem is trivial for p = 1 where

ΩE(p) = ΩM (p) = 1 and it certainly reduces to the continuum TSP discussed before for

p → 0 (ΩE ' 0.72 and ΩM ' 0.92; although we observed higher values, viz., ΩE ' 0.79

and ΩM ' 1.01, since N is not suffiently large). The variations of Ω with p are found to be

monotonic without any irregular behaviour at any intermediate point like the percolation

point, etc. The crossover from the triviality to the NP- hard problem seems to occur at

p < 1. However, this requires further investigation.
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Figure captions

Fig. 1 : Calculating the average distance between two nearest neighbours along a strip of

width W .

Fig. 2 : Plot of lE
√
p against W

√
p from eqn. (2).

Fig. 3 : Plot of lM
√
p against W

√
p from eqn. (4).

Fig. 4 : A typical optimized tour for TSP on dilute lattice in the Euclidean metric for

N = 64 cities.

Fig. 5 : Plot of ΩE, ΩM and ΩM/ΩE against p for TSP on dilute lattice, obtained using

the optimization programs (exact) for N = 64 cities (fixed). The error bars are due to

configuration to configuration variations.
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